
SPECTRUM OF PERTURBATIClNS ANDSTABILITY OF 

CONVECTIVE MOTION BETWEEN VERTICAL PLANES 

(SPEKTR VOZMUSHCHENII I USTOICHIVOST’ KONVEKTIVNOGO 
DVIZHENIIA MEZHDU VERTIKAL’NYMI PLOSKOSTIAMI) 

PMM Vol. 31, No. 2, 1967, pp. 349-355 

R. N. RUDAKOV 
(Perm? 

Received November 9, 1966) 

In a previous paper [l] we have investigated the behavior of small perturbations in a 

convective flow of a viscous incompressible fluid between two infinite, vertical, parallel 

planes, heated to different temperatures. Spectra of decrements of normal perturbations 
for small values of the Grasshof number G were constructed and the intersections of the 
lower levels of spectrum were investigated. The present paper uses the Galerkin method 
of solution with a large number of base functions. Numerical computations performed 
on a digital computer enabled us to find spectra of decrements over the following range 

of Grasshof numbers: 0 < kG < 2500 (here k is the perturbation wave number). D&c- 
tions concerning the presence of monotonous instability in the steady flow are confirmed 

and the absence of oscillatory instability over the given interval of kG is shown, Finally, 

the form of velocity and temperature perturbations is studied, 

1, Let a steady flow with velocity and temperature profiles @] 

uo=‘/e (a-r), To=-x (1.1) 

be established in an infinite vertical layer of a viscous incompressible fluid, bounded by 

two planes x = ItL, between which there exists a temperature difference equal to 2 6. 

Consider small normal perturbations proportional to exp( -it + &mZ) where A is a 
complex decrement, k is a real wave number and 2 is the vertical coordinate. For 

dimensionless amplitudes of perturbations, equations of free convection yield 

Q1 (T, CD) E P’ AT + hT + a (To’0 - uoT) = 0 

Qp (T, @) 5 bW + hAQ, + T’ + aHQ, = 0 

c _ gws -- 
v= ’ 

P = *, a = ikG, A = g - ka, H = vg” - ,oAj (I.21 

with boundary conditions 

T(+i) = Q, (fl) = @‘(-&I) = 0 (1.3) 

where g and rare the respective amplitudes of perturbations of the s-am function and 
the temperature, G is the Grasshof number.P is the Prandtl number and a prime denotes 
differentiation with respect to X. The magnitudes L, La / Y, 8 and ,&a1 / Y will 
denote the units of distance, time, te :nperature and velocity, respectively. 

Boundary value problem (1.2) and (1.3) is solved by the Galerkin method. Approxi- 
mate solution of this problem is sought in the form of Expansions 

P-1 4-l 
T* = 2 ‘~mTm@), a,* = 2 &‘p,@) 

me3 n=o 
(1.4) 
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Base functions T,,,(O) and p,“) I?] satisfy Eqs. 
P-IAT,~“) f V,(~)!Tm(~) = 0, A29 

n 
(‘I) f p 

n 
(o)ATn(@ ~ (J (1.5) 

Requirement that Ql(p, @ *) and Qz(T*, 9 l ) are orthogonal to the functions 
(T,(“!} (r = 0, 1, 2 ,.“, p - 1) and {<pi’“‘} (s = 0, 1 , . . . . q - i) respectively, leads to 
a system of linear homogeneous algebraic equations for the coefficients of expansion 

(1.4) p-_-i 

x %Jvm(O)-- 
9-1 

h)6,,+aBrm]+a x p,,C,,=O {r=U,l,2,...,p--1) 
nz=Q n=o 

P--L q---L 
- 2 a,D,, + 2 p,[(p,“L~ - ?L)6,n- al&J= 0 (s = 0, I,‘),.. .,q --i) (1X) 

7n=O n=O 

Matrix elements Bpn , CPU, D,, and ffsn are defined as follows : 

B 
1 ? =- 

rm Y r s T,(“)voTm(o) dx .c N%l 
q. (pr2 - P,‘P 

[6 (p? + pm2) - (p,.2 - p,yy (- if”{“+‘” +‘) 

-1 
(r=h,M=2v+1) for (P = 2v + 1, m = 2y) 

1 

Cm=-$ 
S 

T,(‘NT;~~(O) dx z 

prnyr-1 (- j)(ff2)’ 2 (r, n = 2v) 

r -1 
F,,y,-i (_ j)()‘“‘)la (r, I1 = 2v $ 1) 

1 

s T,(O)‘q$(‘) dz 3: 
F,,J~-%.a& (- l)(m-‘)@ (m = 2Y + i, s = 2v) 

-1 
FmsJ,-lk cothk (- l)“‘a (m = 2v, s = 2v + 1) 

1 

Ha, z f ~+~)Hrp,(*) dx = 
s 

2 Jsk’ [K,, + LlnktantJc + MBn k ~0th kj (s = 2v + I, II= 2v) 

S -1 
25,’ [K,, f L,,k cuth k + M,,k&] (s = 2v, n = 2v + 1) 

where (1.7) 

1 

Y, = s T,(Ola dx = 1, pn = T Cm+ 0, Frn = 
2P,F,(O) 

-1 
v r f”)P (vr% - &‘O’) 

1 

J, zz s (s = 2v) 

-1 (s= 2v + i) 

1 
q*=gn-Y&-&)- 

p&+ 
(tqO) + P lo)) (3 c P 

3 (p G-p (*))a 
n (O)) 

- h 
p wp wy + p 

4 n 

8 n tn 72 
FNZl 

ns - 
(p 

I 
(0) - pn(W)4 

us = p,(“) - kt, un - 3k2 
g, = -piyB &=u,+~u,,, ha,,= 

n p (0) 
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Condition of existence of a nontrivial solution of the nonlinear homageneous system 
(1.6) defines the spectrum of characteristic decrements h of perturbations and their 

dependence on the Graahof number G, Prandti number P and the wave number k. 

Problem of determination of the spectrum is connected with establishing the eigenvalues 

h of the normal matrix of order fl= p+ 4 , constructed from the coefficients of (1.6). 
This matrix can be reduced to quasitriangular form by the orthogonal power method 

given by Voevodin in 133 [*). 
This transformation results in formation, on the main diagonal, of block matrices of 

the order smaller than fl. These can be expanded into polynomials in powers of A, 
whose roots then give the required spectrum of eigenvalues. Eigenvector of the matrix 

is determined by the Gauss’ method. 

A11 computations were performed on the digital computer “Aragats” in the Computa- 

tional Center of the Perm’ University. 

Fig. 1 

2 l Approximation using 28 base functions (p = 4 = 14) was utilized for the compu- 

tation of decrements. Such approximation makes feasibge EM construction of between 

9 and 14 (depending OR the Prandtl number) lower levels of the spectrum of decrements 
over the following range of Grasshof numbers, o <kG -c 2500 , Convergence of expan- 

sions (I, 4) deteriorates titb increasing G. To check the convergence, the decrements 

“) This method was used earlier-by Birikh [4 and 5J when investigating perturbation 
spectra of plane isothermal flows possessing an odd velocity profile. 
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were calculated using various numbers of base functions (fl = 24. 26. 28) and results 

obtained for N = 26 and 28 were found, within the given range of kG, to be practically 
identical, 

Figs. 1 to 3 show the dependence of the real part of the decrement Re i and of the 
magnitude ~2 = (Imh / lrCJ2 on the parameter x = (/cC)‘~~ for perturbations with wave 

numbers % - 1 and 3 and for three values of the Prandtl number P = 0.1, 1 and 10 . 
Real parts of decrements characterize the rate of decay (Re x > 0) or growth (Re x < 0) 

of perturbations, while C! can be interpreted as phase velocity of perturbations in terms 
of velocity of the main flow. 
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Fig. 2 

In the spectra of Re 1 , solid and broken lines originating on the axis s= 0 represent, 

respectively, the levels of isothermal and nonisothermal perturbations, i e. the HJ- and 

v -levels [ 11. The dash-dot line represents real parts of the complex conjugate decre- 
ments. 

We see from Figs. 1 and 3 that at small values of kG all decrements are real and 
positive, and the corresponding perturbations decay monotonously (* ). With increasing 

*) In case of degeneration of the nonperturbed spectrum 
perturbations can occur at the arbitrarily small values o fJ8 

= 0), decaying oscillatory 
. 
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E, real levels merge pairwise forming complex conjugate decrements. Ar suificientl) 

large values of h-G, all perturbations in the lower part of the spectrum hecome oscilla- 

tory (with exception of a real level intersecting the axis ReX - 0 , Singular points cor- 

responding to transition from the monotonous to escillatory perturbations, are also pecul- 
iar for the spectra of isothermal flows with odd profiles 14 and 51. In a large number of 

spectra constructed by us no evidence was found for a “simple” type of intersection of 
real levels, and this leads us to believe that such intersections are irlpossible for the 

given convective problem. 

Fig. 3 

A distinct feature of decremental spectra given above (as compared with the spectra 

of isothermal flows) is the presence in them of singular points, where a pair of complex 
conjugate decrements splits, as kG increases, into two real levels (Fig, 2a and 3a), the 
lower of which always intersects the axis Re x = 0 and is connected with the appearance 

of instability, 
Shape of the decremental spectrum is basically governed by the Prandtl number. At 

its low values (p = 0. l), lower part of the spectrum (Fig. 1) contains, basically, the levels 
of isothermal perturbations. Lowest p -levels differ little from the corresponding levels 
of the isothermal problem possessing the same velocity profile of the basic flaw [5> The 
most populated decremental spectrum (14 levels) is shown on Fig. 2 forP = 1. This case 

is characteristic for the present problem, as at Pw 1, v - and 1_~- levels alternate and the 

pattern of spectrum is defined, in general, by interactions between the perturbations of 
various types. At higher values of P(Fig. 3, P = 10). lower part of the spectrum is occu- 
pied by the decrements of nonisothermal perturbations. Fig, 3a shows an interesting 

behavior of the levels IJo , vg and v7 which produce, at the intersections, three Singular 



Spectrum of perturbations and stability of convective motion 381 

points. 
3 , Analysis of the spectra of decrements leads to the following conclusions concern- 

ing the stability of the steady flow under consideration. Figs. 1 to 3. (?Z = 1) show that 
the axis Re A = 0 is intersected by a real level. Point of intersection yields the critical 
Grasshof number G *, at which the steady flow becomes unstable with respect to stationary 

perturbations. Neutral curve G *(k> has a minimum at some critical value of the wave 

number $. . Fig. 4 illustrates the relationship between the lowest critical Grasshof num- 
ber G ', and the Prandtl number P. 

Fig, 4 

we see from it that the dependence of G: on ?' is weak. Critical wave number km 
is also weakly dependent.on P ; km w 1.4 over the range 0.01 <.P< 10 . 

Presence of the monotonous instability can also be deduced using a comparatively 

simple approximation of four base functions (p = 4 = 2) @]. Critical values obtained 
in the approximations I= 4 and fl= 20 fall fairly close, largest divergence obtained at 

small values of P. is 20% . 
Method of computation adopted here cannot 

be used to find the boundary of monotonous 

stability at large values of P. This is caused 
by the fact that at large P, monotonous insta- 

bility depends on the first isothermal p. -level, 
below which we find (Fig. 3a) an appreciable 

number of nonisothermal v -levels. Conse- 
quently, to describe the behavior of the critical 

level we must consider its interaction with a 
Fig. 5 large number of v -levels and this requires, at 

P B 1, a high order approximation. Those 
used by us ($7 = 4 = 14) make it possible to find critical Grasshof numben 0’ otrly for 
the values ofp of up top’“10. 

Development of monotonous instability should, obviously, be accompanied by the 
appearance of secondary steady flows periodic along the layer. This was found experi- 

mentally by Elder in v] for higher values of the Rayleigh number. Unfortunately, quan- 
titative comparison of the theory with experiment cannot be made for two reaaor& 

Firstly, experiments in v] utilized a layer of finite height, consequently the appearance 

of secondary flows was preceded by the formation of a boundary layer, and the stream in 
which the instability developed has velocity and temperature profiles differing appreci- 
ably from those given in (1.1). Secondly, fluid possessing high Prandtl number (p u l#) 
was used in the experiments, while our method of computation is valid only up to Pm lo. 

Authors of [S] present a case for existence. at comparatively small values of Graashof 
number, of oscillatory instability with respect to moving perturbations In addition to 
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monotonous instability. Results quoted in the present paper, however, point to the absence 
of such instability within the given range of kG " Figs, 1 to 3 show that Re x > 0 for all 

complex conjugate decrements. i. e. osciflator$ perturbations decay, Fig. 5 shows two 
lowest levels of the spectrum Re i (k = 0. 5, J? = 10) calculated for various fl. We see 

that when fl= 4, then the real part of h becomes zero at some I$ , However, in this 

range of values of kG the results vary appreciably with #, and high approximation 
(fl- 20) is needed to stabilize the values of x , We find that when #= 20 or 24, real 
part of 1 is positive over the whole range of values of kG, Thus, presence of oscillatory 

instability suggested in [S] is not confirmed when higher approximations are used, 

L 

Fig, 6 Fig, 7 

8 
i 

Our method leaves open the problem of spectrum and, in particular, the problem of 
existence of oscilktary instability for kc > 2506. Gotoh and Satoh in ES] use an asymp- 

totic method to show that oscillatory instability appears at very high values of Grosshof 

number (G*= 4.6 x 106). 

4, Figs, 6 and ‘7 show the streamlines (on the left) and isotherms of characteristic 
perturbations with & = 1 and P = 1, Fig. 6 iilustrat a monotonously increasing perturb- 
ation with the decrement A = - 

“g 13,247, when (kG) = 55 (pointA on Fig. Za), ft is 
worth noting that de streamlines (Fig. Sa) pracdcaIly coincide with the.streamlines of 

a monotonously increasing perturbation in an isothermal flow possessing the same velo- 

city profile fs$ Fig. 7 shows a decaying oaci~~atory perturbatiun with a decrement 
h = 17,727 + 141.29 t, when K. = (kG$ = 50 (point B on Fig, 2a). This is cancelled 

by the flow in the positive direction of the Z -axis. 
Conatrfction of the streamlines and isotherms in the left-hand side of the channel 
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points to the fact that the main part of the perturbations is concentrated in that half of 

the channel, in which the direction of the drift coincides with the direction of velocity 

vector of the steady flow. 

Author expresses his thanks to G, 2, Gershuni who supervised this work and to E, M, 

Zhukhovitskii and R. V, Birikh for useful suggestions and criticism of results. 
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